	11011	IIII	11010	IIII	Ш
1168111					Ш

(Pages: 2)

Reg.	No.	: .		 	 4.5	 4.9	 	#			 	
Mana	5 1 10											

Fourth Semester B.Tech. Degree Examination, May 2014 (2008 Scheme)

Branch: ELECTRONICS AND COMMUNICATION 08.404: Electronics Circuits – II (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions in Part - A. Each question carries 4 marks :

1. Explain the non-ideal characteristics of differential amplifier.

2. Discuss the working of a typical current mirror circuit.

- 3. What are the merits of stagger timed amplifiers?
- 4. Explain the working of a voltage series feedback circuit.
- 5. Define f_B and f_T . What is the relationship between them ?
- 6. Show that at low frequencies the hybrid π model with $r_{b'c}$ and r_{ce} taken as infinite reduces to the approximate CE h-parameter model.
- 7. For a low pass single pole amplifier sketch the Bode magnitude plot and its piecewise linear approximation.
- 8. Consider a feedback amplifier with a single pole transfer function. What is the relationship between the high 3 dB frequency with and with-out feedback?
- Sketch the circuit of a RC phase shift oscillator using a BJT.
- Draw the electrical equivalent circuit of a piezo electric crystal. Sketch the reactance versus frequency function. (10x4=40 Marks)

PART-B

Answer any two questions from each Module. Each question carries 10 marks:

Module - I

11. Draw the circuits for common mode and differential mode operation's of a differential amplifier. Also derive an expression for CMRR.

12. For the differential amplifier shown in Figure 1, below, let I = 1 mA, V_{ce} = 5V, V_{CM} = -2V, R_{C} = 3k Ω and β =100. Assume that the BJTs have V_{BE} = 0.7V at i_{c} = 1mA. Find the voltage at the emitters and at the outputs.

- 13. a) A BJT differential amplifier uses a 300 μ A bias current. What is the value of g_m of each device ? If β is 150, what is the differential input resistance ?
 - b) A differential amplifier uses a 600µ A emitter bias source, with two well matched transistors, but the collector load resistors are mismatched by 10% what input offset voltage is required to reduce the differential output voltage to zero?

Module - II

- 14. Analyse a cascode amplifier for midband gain and high frequency poles.
- 15. Explain the working of the shunt-shunt feedback configuration. Derive expressions for closed loop gain, input resistance and output resistance, with feedback.
- 16. In a feedback amplifier for which A = 10⁴ and A_f = 10³, what is the gain desensitivity factor? Find A_f exactly and approximately, in the two cases a) A drops by 10%, and b) A drops by 30%.

Module - III

- 17. Explain the working of a Wienbridge oscillator with a limiter used for amplitude control. Derive an expression for frequency of oscillation.
- 18. With the help of a circuit diagram, explain the operation of a bistable multivibrator. Suggest typical applications of bistable multivibrators.
- 19. Explain the functioning of a typical current sweep circuit, with a circuit diagram. What are the major applications of sweep circuits?

(6×10=60 Marks)